OPEN IN READ APP
JOURNAL ARTICLE

Nuclear factor-kappaB activation: a molecular therapeutic target for estrogen receptor-negative and epidermal growth factor receptor family receptor-positive human breast cancer

Sindhu Singh, Qian Shi, Shannon T Bailey, Marek J Palczewski, Arthur B Pardee, J Dirk Iglehart, Debajit K Biswas
Molecular Cancer Therapeutics 2007, 6 (7): 1973-82
17620428
Nuclear factor-kappaB (NF-kappaB), a transcription factor with pleotropic effects, is a downstream mediator of growth signaling in estrogen receptor (ER)-negative and erbB family particularly erbB2 (HER-2/neu) receptor-positive cancer. We previously reported activation of NF-kappaB in ER-negative breast cancer cells and breast tumor specimens, but the consequence of inhibiting NF-kappaB activation in this subclass of breast cancer has not been shown. In this study, we investigated the role of NF-kappaB activation by studying the tumorigenic potential of cells expressing genetically manipulated, inducible, dominant-negative inhibitory kappaB kinase (IKK) beta in xenograft tumor model. Conditional inhibition of NF-kappaB activation by the inducible expression of dominant-negative IKKbeta simultaneously blocked cell proliferation, reinstated apoptosis, and dramatically blocked xenograft tumor formation. Secondly, the humanized anti-erbB2 antibody trastuzumab (Herceptin) and the specific IKK inhibitor NF-kappaB essential modifier-binding domain peptide both blocked NF-kappaB activation and cell proliferation and reinstated apoptosis in two ER-negative and erbB2-positive human breast cancer cell lines that are used as representative model systems. Combinations of these two target-specific inhibitors synergistically blocked cell proliferation at concentrations that were singly ineffective. Inhibition of NF-kappaB activation with two other low molecular weight compounds, PS1145 and PS341, which inhibited IKK activity and proteasome-mediated phosphorylated inhibitory kappaB protein degradation, respectively, blocked erbB2-mediated cell growth and reversed antiapoptotic machinery. These results implicate NF-kappaB activation in the tumorigenesis and progression of ER-negative breast cancer. It is postulated that this transcription factor and its activation cascade offer therapeutic targets for erbB2-positive and ER-negative breast cancer.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
17620428
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"