Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Nuclear factor-kappaB activation: a molecular therapeutic target for estrogen receptor-negative and epidermal growth factor receptor family receptor-positive human breast cancer.

Nuclear factor-kappaB (NF-kappaB), a transcription factor with pleotropic effects, is a downstream mediator of growth signaling in estrogen receptor (ER)-negative and erbB family particularly erbB2 (HER-2/neu) receptor-positive cancer. We previously reported activation of NF-kappaB in ER-negative breast cancer cells and breast tumor specimens, but the consequence of inhibiting NF-kappaB activation in this subclass of breast cancer has not been shown. In this study, we investigated the role of NF-kappaB activation by studying the tumorigenic potential of cells expressing genetically manipulated, inducible, dominant-negative inhibitory kappaB kinase (IKK) beta in xenograft tumor model. Conditional inhibition of NF-kappaB activation by the inducible expression of dominant-negative IKKbeta simultaneously blocked cell proliferation, reinstated apoptosis, and dramatically blocked xenograft tumor formation. Secondly, the humanized anti-erbB2 antibody trastuzumab (Herceptin) and the specific IKK inhibitor NF-kappaB essential modifier-binding domain peptide both blocked NF-kappaB activation and cell proliferation and reinstated apoptosis in two ER-negative and erbB2-positive human breast cancer cell lines that are used as representative model systems. Combinations of these two target-specific inhibitors synergistically blocked cell proliferation at concentrations that were singly ineffective. Inhibition of NF-kappaB activation with two other low molecular weight compounds, PS1145 and PS341, which inhibited IKK activity and proteasome-mediated phosphorylated inhibitory kappaB protein degradation, respectively, blocked erbB2-mediated cell growth and reversed antiapoptotic machinery. These results implicate NF-kappaB activation in the tumorigenesis and progression of ER-negative breast cancer. It is postulated that this transcription factor and its activation cascade offer therapeutic targets for erbB2-positive and ER-negative breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app