Add like
Add dislike
Add to saved papers

Preparation, characterization, and antimicrobial activity of quaternized chitosan/organic montmorillonite nanocomposites.

Quaternized chitosan/layered silicate nanocomposite was prepared by simple solution-mixing in aqueous media. Montmorillonite (MMT) modified with cetyltrimethyl ammonium bromide was used as an organically modified layered silicate. XRD and TEM analyses respectively confirmed that silicate layers of MMT were intercalated and nicely distributed in quaternized chitosan matrix in despite of the high content of MMT (25-50 wt %). The interactions between the quaternized chitosan macromolecules and MMT in aqueous media were analyzed using FTIR, XRD, and zeta-potential measurements. Antimicrobial studies showed that the nanocomposites could strongly inhibit the growth of a wide variety of microorganisms, including Gram-positive bacteria, Gram-negative bacteria, and fungi; more importantly, they exhibited good antimicrobial capacity in whichever medium, in weak acid, water, or weak base. As the amount of MMT increased, the nanocomposites had better inhibitory effect on microorganisms, especially Gram-positive bacteria. The lowest minimum inhibition concentration (MIC) value of the nanocomposites against Staphylococcus aureus and Bacillus subtilis were less than 0.00313% (w/v) under all the conditions. The adsorption action of MMT on bacteria was simply discussed via SEM images. The results revealed that the strong antimicrobial of the nanocomposites may be attributed to the fine dispersion and the interaction between quaternized chitosan and MMT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app