Upregulation of IL-6 mRNA by IL-6 in skeletal muscle cells: role of IL-6 mRNA stabilization and Ca2+-dependent mechanisms

Cora Weigert, Martina Düfer, Perikles Simon, Evaine Debre, Heike Runge, Katrin Brodbeck, Hans U Häring, Erwin D Schleicher
American Journal of Physiology. Cell Physiology 2007, 293 (3): C1139-47
Skeletal muscle cells have been established as significant producers of IL-6 during exercise. This IL-6 production is discussed as one possible mediator of the beneficial effects of physical activity on glucose and fatty acid metabolism. IL-6 itself could be the exercise-related factor that upregulates and maintains its own production. We investigated this hypothesis and the underlying molecular mechanism in cultured C(2)C(12) cells. IL-6 led to a rapid and prolonged increase in IL-6 mRNA, which was also found in human myotubes. Because IL-6 has been shown to activate AMP-activated kinase (AMPK), we studied whether, in turn, activated AMPK induces IL-6 expression. Pharmacological activation of AMPK with 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside upregulated IL-6 mRNA expression, which was blocked by knockdown of AMPK alpha(1) and alpha(2) using small, interfering RNA (siRNA) oligonucleotides. However, the effect of IL-6 was shown to be independent of AMPK, since the siRNA approach silencing the AMPK alpha-subunits did not reduce the upregulation of IL-6 induced by IL-6 stimulation. The self-stimulatory effect of IL-6 partly involves a Ca(2+)-dependent pathway: IL-6 increased intracellular Ca(2+), and intracellular blockade of Ca(2+) with a Ca(2+) chelator reduced the IL-6-mediated increase in IL-6 mRNA levels. Moreover, inhibition of Ca(2+)/calmodulin-dependent kinase kinase with STO-609 or the siRNA approach decreased IL-6 mRNA levels of control and IL-6-stimulated cells. A major, STO-609-independent mechanism is the IL-6-mediated stabilization of its mRNA. The data suggest that IL-6 could act as autocrine factor upregulating its mRNA levels, thereby supporting its function as an exercise-activated factor in skeletal muscle cells.


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"