Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Self-assembly of beta-sheet forming peptides into chiral fibrillar aggregates.

The authors introduce a novel mid-resolution off-lattice coarse-grained model to investigate the self-assembly of beta-sheet forming peptides. The model retains most of the peptide backbone degrees of freedom as well as one interaction center describing the side chains. The peptide consists of a core of alternating hydrophobic and hydrophilic residues, capped by two oppositely charged residues. Nonbonded interactions are described by Lennard-Jones and Coulombic terms. The influence of different levels of "hydrophobic" and "steric" forces between the side chains of the peptides on the thermodynamics and kinetics of aggregation was investigated using Langevin dynamics. The model is simple enough to allow the simulation of systems consisting of hundreds of peptides, while remaining realistic enough to successfully lead to the formation of chiral, ordered beta tapes, ribbons, as well as higher order fibrillar aggregates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app