Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Magnetization transfer ratio measurement in multiple sclerosis normal-appearing brain tissue: limited differences with controls but relationships with clinical and MR measures of disease.

We investigated the magnetization transfer ratio (MTR) of normal-appearing white (NAWM) and grey matter (NAGM) in a relatively large group of multiple sclerosis (MS) patients, and the relations of MTR changes with clinical disability. MTR was measured in 66 MS patients (12 PP, 35 RR, 19 SP) and 23 healthy controls, using a whole-brain 3D-FLASH technique corrected post-hoc for B1-induced variation. Histogram parameters of conservatively selected NAWM and cortical NAGM were analysed using Bonferroni-corrected ANOVA with age as covariate. Additionally, manually outlined regions of interest were analysed using a multilevel method. Lesions had low MTR (mean 22.7+/-6.9%), but NAWM exhibited limited changes: MTR histogram peak position was 32.8+/-1.0% in controls and 32.4+/-0.9% in MS patients, with a significant decrease compared to controls only in SPMS patients (31.9+/-1.1%, p=0.045). Cortical NAGM histograms did not differ significantly between patients and controls. In SPMS, regional mean MTR was significantly decreased in corpus callosum and hippocampus. MTR histogram parameters of NAGM and NAWM were correlated with EDSS and MSFC scores, with lesion volume and with normalized brain volume. We conclude that disease-induced MTR changes were small in MS NAWM and NAGM, but did correlate with clinical decline, lesion volume and overall cerebral atrophy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app