Genetic algorithm matched filter optimization for automated detection of blood vessels from digital retinal images

Mohammed Al-Rawi, Huda Karajeh
Computer Methods and Programs in Biomedicine 2007, 87 (3): 248-53
Due to the importance of the matched filter in the automated detection of blood vessels in digital retinal images, improving its response is highly desirable. This filter may vary in many ways depending on the parameters that govern its response. In this paper, new parameters to optimize the sensitivity of the matched filter are found using genetic algorithms on the test set of the DRIVE databases. The area under the receiver operating curve (ROC) is used as a fitness function for the genetic algorithm. To evaluate the improved matched filter, the maximum average accuracy (MAA) is calculated to be 0.9422 and the average area under ROC is 0.9582.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"