Add like
Add dislike
Add to saved papers

Reduction of an azo dye acid black 24 solution using synthesized nanoscale zerovalent iron particles.

The strong color and high total organic carbon (TOC) of laboratory-synthesized azo dye, C.I. Acid Black 24 (AB24), solution was substantially reduced with particles of chemically synthesized nanoscale zerovalent iron (NZVI) under varied conditions of experimental variables such as NZVI dosage, initial dye concentration, and pH. From the results, the synthesized NZVI particles can effectively remove color and TOC of AB24 dye solution under certain conditions. The best removal efficiencies for color and TOC were obtained as 98.9 and 53.8%, respectively, with an initial dye concentration of 100 mg L(-1) and an NZVI dosage of 0.3348 g L(-1). Additionally, the removal rates followed an empirical rate equation with respect to the initial dye concentration as well as the NZVI dosage. The NZVI dosage addition exponentially increments the removal efficiency, with observed empirical reaction rate constants (k) of 0.046-0.603 min(-1) for added NZVI of 0.0335-0.3348 g L(-1). Moreover, the largest unit removal capacity was 609.4 mg of AB24 uptake for each gram of NZVI (i.e., 609.4 mg AB24/g NZVI). Ultimately, the ideal operation conditions were 0.1674-0.3348 g L(-1) of NZVI dosage, 15-30 min of reaction time, and pH 4-9 for 25-100 mg L(-1) of initial dye concentration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app