Microarray analyses of transdifferentiated mesenchymal stem cells

Tatjana Schilling, Robert Küffner, Ludger Klein-Hitpass, Ralf Zimmer, Franz Jakob, Norbert Schütze
Journal of Cellular Biochemistry 2008 February 1, 103 (2): 413-33
The molecular events associated with the age-related gain of fatty tissue in human bone marrow are still largely unknown. Besides enhanced adipogenic differentiation of mesenchymal stem cells (MSCs), transdifferentiation of osteoblast progenitors may contribute to bone-related diseases like osteopenia. Transdifferentiation of MSC-derived osteoblast progenitors into adipocytes and vice versa has previously been proven feasible in our cell culture system. Here, we focus on mRNA species that are regulated during transdifferentiation and represent possible control factors for the initiation of transdifferentiation. Microarray analyses comparing transdifferentiated cells with normally differentiated cells exhibited large numbers of reproducibly regulated genes for both, adipogenic and osteogenic transdifferentiation. To evaluate the relevance of individual genes, we designed a scoring scheme to rank genes according to reproducibility, regulation level, and reciprocity between the different transdifferentiation directions. Thereby, members of several signaling pathways like FGF, IGF, and Wnt signaling showed explicitly differential expression patterns. Additional bioinformatic analysis of microarray analyses allowed us to identify potential key factors associated with transdifferentiation of adipocytes and osteoblasts, respectively. Fibroblast growth factor 1 (FGF1) was scored as one of several lead candidate gene products to modulate the transdifferentiation process and is shown here to exert inhibitory effects on adipogenic commitment and differentiation.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"