Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Preparation, microstructure and mechanical properties of porous titanium sintered by Ti fibres.

Open-cell porous Ti with a porosity ranging from 35 to 84% was successfully manufactured by sintering titanium fibres. The microstructure of the porous titanium was observed by SEM and the compressive mechanical properties were tested. By adjusting the spiral structure of the porous titanium, the pore size can be controlled in a range of 150-600 microm. With the increasing of the porosity, compressive yield strength and modulus decrease as predicated. However, high mechanical properties were still obtained at a medium porosity, e.g. the compressive yield strength and the modulus are as high as 100-200 MPa and 3.5-4.2 GPa, respectively, when the porosity is in the range of 50-70%. It was suggested that the porous titanium be strong enough to resist handing during implantation and in vivo loading. It is expected to be used as biocompatible implant, because their interconnected porous structures permit bone tissues ingrowth and the body fluids transportation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app