Myosin regulatory light chain E22K mutation results in decreased cardiac intracellular calcium and force transients

Danuta Szczesna-Cordary, Michelle Jones, Jeffrey R Moore, James Watt, W Glenn L Kerrick, Yuanyuan Xu, Ying Wang, Cory Wagg, Gary D Lopaschuk
FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 2007, 21 (14): 3974-85
The glutamic acid to lysine mutation at the 22nd amino acid residue (E22K) in the human cardiac myosin regulatory light chain (RLC) gene causes familial hypertrophic cardiomyopathy (FHC) with a phenotype of midventricular obstruction and septal hypertrophy. Our recent histopathology results have shown that the hearts of transgenic E22K mice (Tg-E22K) resemble those of human patients, demonstrating enlarged interventricular septa and papillary muscles. In this study, we show no effect of the E22K mutation on the kinetics of mutated myosin in its ATP-powered interaction with fluorescently labeled single actin filaments compared to nontransgenic or transgenic wild-type (Tg-WT) control mice. Likewise, no change in cross-bridge dissociation rates (g(app)) was observed in freshly skinned papillary muscle fibers. In contrast, maximal force and ATPase were decreased approximately 20% in Tg-E22K skinned papillary muscle fibers and intracellular [Ca2+] and force transients were significantly decreased in intact papillary muscle fibers from Tg-E22K compared to Tg-WT mice. Moreover, energy metabolism measured in isolated working Tg-E22K mouse hearts perfused under conditions of physiologically relevant levels of metabolic demand was similar in Tg-E22K and control hearts before and after 20 min of no-flow ischemia. Our results suggest that the pathological response observed in the E22K myocardium might be triggered by mutation induced changes in the properties of the RLC Ca2+-Mg2+ site, the state of the Ca2+/Mg2+ occupancy and consequently the Ca2+ buffering ability of the RLC. By decreasing the affinity of the RLC for Ca2+, the E22K mutation most likely promotes a Mg2+-saturated RLC producing less force and ATPase than the Ca2+-saturated RLC of WT fibers. Decreased Ca2+ binding may also lead to faster Ca2+ dissociation kinetics in Tg-E22K intact fibers resulting in decreased duration and amplitude of [Ca2+] and force transients. These changes when placed in vivo would result in higher workloads and consequently cardiac hypertrophy.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"