JOURNAL ARTICLE

Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus

D H Goetz, Y Choe, E Hansell, Y T Chen, M McDowell, C B Jonsson, W R Roush, J McKerrow, C S Craik
Biochemistry 2007 July 31, 46 (30): 8744-52
17605471
Severe acute respiratory syndrome (SARS) is an emerging infectious disease associated with a high rate of mortality. The SARS-associated coronavirus (SARS-CoV) has been identified as the etiological agent of the disease. Although public health procedures have been effective in combating the spread of SARS, concern remains about the possibility of a recurrence. Various approaches are being pursued for the development of efficacious therapeutics. One promising approach is to develop small molecule inhibitors of the essential major polyprotein processing protease 3Clpro. Here we report a complete description of the tetrapeptide substrate specificity of 3Clpro using fully degenerate peptide libraries consisting of all 160,000 possible naturally occurring tetrapeptides. The substrate specificity data show the expected P1-Gln P2-Leu specificity and elucidate a novel preference for P1-His containing substrates equal to the expected preference for P1-Gln. These data were then used to develop optimal substrates for a high-throughput screen of a 2000 compound small-molecule inhibitor library consisting of known cysteine protease inhibitor scaffolds. We also report the 1.8 A X-ray crystal structure of 3Clpro bound to an irreversible inhibitor. This inhibitor, an alpha,beta-epoxyketone, inhibits 3Clpro with a k3/Ki of 0.002 microM(-1) s(-1) in a mode consistent with the substrate specificity data. Finally, we report the successful rational improvement of this scaffold with second generation inhibitors. These data provide the foundation for a rational small-molecule inhibitor design effort based upon the inhibitor scaffold identified, the crystal structure of the complex, and a more complete understanding of P1-P4 substrate specificity.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17605471
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"