JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Measurement of glycine binding site of N-methyl-D-asparate receptors in living human brain using 4-acetoxy derivative of L-703,717, 4-acetoxy-7-chloro-3-[3-(4-[11c] methoxybenzyl) phenyl]-2(1H)-quinolone (AcL703) with positron emission tomography.

Synapse 2007 October
N-methyl-D-aspartate (NMDA) receptors are of major interest in brain functions and neuropsychiatric disorders. However, at present there are few suitable radioligands for in vivo imaging of NMDA receptors. 7-choloro-4-hydroxy-3-[3-(4-methoxybenzyl) phenyl]-2(1H)-quinolone (L-703,717) is one of the potent ligands for the glycine-binding site of NMDA receptors. 4-Acetoxy derivative of L-703,717 (AcL703) is a candidate, as a positron emission tomography (PET) ligand for NMDA receptors, because of its better permeability at the blood-brain barrier compared with L-703,717. After intravenous injection of 624-851 MBq of [11C]AcL703, dynamic PET scan was performed on six healthy males for 90 min. Regions-of-interest were located on the cerebral cortices, cerebellar cortex, and cerebral white matter. The binding potential (BP) was calculated from the ratio of the area under the curve (AUC) of radioactivities from 40 to 90 min in the target region to that in white matter. Regional radioactivities reached close to equilibrium in all regions after about 40 min postinjection. Regional brain uptake of [11C]AcL703 at 40 min after injection was 0.00028-0.00065% of the injected dose/milliliter. Radioactivity concentration of [11C]AcL703 was highest in the cerebellar cortex and lowest in white matter. AUC in the cerebellar cortex was higher than those of cerebral cortices, thalamus, striatum, and white matter. BP in the cerebellar cortex was twofold higher than in the cerebral cortices (cerebellar cortex: BP=2.20+/-0.72; cerebral cortices: BP=1.05+/-0.45). Despite the low brain uptake of [11C]AcL703, regional distributions were in good agreement with our previous studies of rodents. This indicates the possibility of in vivo evaluation of NMDA receptors using PET with [11C]AcL703 in living human brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app