Add like
Add dislike
Add to saved papers

Toll-like receptors 1 and 6 are involved in TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteins.

Hepatitis C virus (HCV) is a leading cause of end-stage liver disease through sustained inflammation of the liver produced by the host's immune system. The mechanism for HCV evasion or activation of the immune system is not clear. TLRs are cellular activators of the innate immune system. We recently reported that TLR2-mediated innate immune signaling pathways are activated by HCV core and NS3 proteins. TLR2 activation requires homo- or heterodimerization with TLR1 or TLR6. Here, we aimed to determine whether TLR2 coreceptors participated in cellular activation by HCV core or NS3 proteins. By designing small interfering RNAs targeted to TLR2, TLR1, and TLR6, we showed that knockdown of each of these receptors impairs pro- and anti-inflammatory cytokine activation by TLR-specific ligands as well as by HCV core and NS3 proteins in human embryonic kidney-TLR2 cells and in primary human macrophages. We found that HCV core and NS3 proteins induced TNF-alpha and IL-10 production in human monocyte-derived macrophages, which was impaired by TLR2, TLR1, and TLR6 knockdown. Contrary to human data, results from TLR2, TLR1, or TLR6 knockout mice indicated that the absence of TLR2 and its coreceptor TLR6, but not TLR1, prevented the HCV core and NS3 protein-induced peritoneal macrophage activation. In conclusion, TLR2 may use TLR1 and TLR6 coreceptors for HCV core- and NS3-mediated activation of macrophages and innate immunity in humans. These results imply that multiple pattern recognition receptors could participate in cellular activation by HCV proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app