Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

The multikinase inhibitor sorafenib induces apoptosis in highly imatinib mesylate-resistant bcr/abl+ human leukemia cells in association with signal transducer and activator of transcription 5 inhibition and myeloid cell leukemia-1 down-regulation.

Molecular Pharmacology 2007 September
The effects of the multikinase inhibitor sorafenib (BAY 43-9006), an agent shown previously to induce apoptosis in human leukemia cells through inhibition of myeloid cell leukemia-1 (Mcl-1) translation, have been examined in Bcr/Abl(+) leukemia cells resistant to imatinib mesylate (IM). When administered at pharmacologically relevant concentrations (10-15 microM), sorafenib potently induced apoptosis in imatinib mesylate-resistant cells expressing high levels of Bcr/Abl, cells exhibiting a Bcr/Abl-independent, Lyn-dependent form of resistance, and CD34(+) cells obtained from imatinib-resistant patients. In addition, Ba/F3 cells expressing mutations rendering them resistant to IM (e.g., E255K, M351T) or to IM, dasatinib, and nilotinib (T315I) remained fully sensitive to sorafenib. Induction of apoptosis by sorafenib was associated with rapid and pronounced down-regulation of Mcl-1 and diminished signal transducer and activator of transcription (STAT) 5 phosphorylation and reporter activity but only very modest and delayed inactivation of the Bcr/Abl downstream target Crkl. Moreover, transfection with a constitutively active STAT5 construct partially but significantly protected cells from sorafenib lethality. Ba/F3 cells expressing Bcr/Abl mutations were as sensitive to sorafenib-induced Mcl-1 down-regulation and dephosphorylation of STAT5 and eukaryotic initiation factor 4E as wild-type cells. Finally, stable knockdown of Bcl-2-interacting mediator of cell death (Bim) with short hairpin RNA in K562 cells significantly diminished sorafenib lethality, arguing strongly for a functional role of this proapoptotic Bcl-2 family member in the lethality of this agent. Together, these findings suggest that sorafenib effectively induces apoptosis in highly imatinib-resistant chronic myelogenous leukemia cells, most likely by inhibiting or down-regulating targets (i.e., STAT5 and Mcl-1) downstream or independent of Bcr/Abl.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app