Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chronic blockade of nitric oxide synthesis reduces adiposity and improves insulin resistance in high fat-induced obese mice.

Endocrinology 2007 October
Genetic deletion of inducible nitric oxide synthase (NOS) in mice has been shown to improve high-fat diet (HFD)-induced insulin resistance. However, a pathophysiological role of endogenous nitric oxide (NO) in obesity-related insulin resistance remains controversial. To address this issue, we examined the metabolic phenotypes in HFD-induced obese mice with chronic blockade of NO synthesis by a NOS inhibitor, N(G)-nitro-l-arginine methyl ester (L-NAME). Six-week-old male C57BL/6j mice were provided free access to either a standard diet (SD) or a HFD and tap water with or without L-NAME (100 mg/kg.d) for 12 wk. L-NAME treatment significantly attenuated body weight gain of mice fed either SD or HFD without affecting calorie intake. L-NAME treatment in HFD-fed mice improved glucose tolerance and insulin sensitivity. HFD feeding induced inducible NOS mRNA expression, but not the other two NOS isoforms, in white adipose tissue (WAT) and skeletal muscle. L-NAME treatment up-regulated uncoupling protein-1 in brown adipose tissue of HFD-fed mice but down-regulated monocyte chemoattractant protein-1 and CD68 mRNAs levels in WAT. HFD feeding up-regulated leptin mRNA levels but conversely down-regulated adiponectin mRNA levels in WAT, but these effects were unaffected by L-NAME treatment. Moreover, L-NAME treatment also increased peroxisome proliferator-uncoupling protein-3 mRNA levels in skeletal muscles of HFD-fed mice. Increased urinary excretion of norepinephrine after HFD feeding was augmented in L-NAME-treated mice. Insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 and serine phosphorylation of Akt/Akt2 in soleus muscle was markedly impaired in HFD-fed mice but reversed by L-NAME treatment. In conclusion, chronic NOS blockade by L-NAME in mice ameliorates HFD-induced adiposity and glucose intolerance, accompanied by reduced adipose inflammation and improved insulin signaling in skeletal muscle, suggesting that endogenous NO plays a modulatory role in the development of obesity-related insulin resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app