Add like
Add dislike
Add to saved papers

Surface modification of poly(L-lactic acid) by entrapment of chitosan and its derivatives to promote osteoblasts-like compatibility.

Surface modification of biomaterials has been adopted over the years to improve their biocompatibility. In this study, aiming to promote hydrophilicity and to introduce natural recognition sites onto poly(L-lactic acid) (PLLA) films, chitosan and its derivatives, carboxymethyl chitosan (CMC) and N-methylene phosphonic chitosan (NPC), were used to modify the surface of PLLA films by an entrapment method. The surface properties of original and modified PLLA films were measured by using water contact angle measurement and X-ray photoelectron spectroscopy (XPS). Subsequently, the cytocompatibility of these PLLA films was investigated by testing osteoblasts-like cytocompatibility, cell attachment, cell proliferation, alkaline phosphatase activity, and cell cycle. Experimental results indicated that the hydrophilicity of the modified films was improved and the surface of the modified PLLA films became enriched with chitosan and its derivatives. Moreover, the surface modification with chitosan and its derivatives significantly promoted osteoblasts-like compatibility of PLLA films. This surface modification, combining the individual advantages of PLLA with good mechanical property and chitosan as well as its derivatives with good cytocompatibility, is a promising method to prepare desirable biomaterials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app