Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

IGF-1 protects oligodendrocyte progenitors against TNFalpha-induced damage by activation of PI3K/Akt and interruption of the mitochondrial apoptotic pathway.

Glia 2007 August 16
Proinflammatory cytokine-mediated injury to oligodendrocyte progenitor cells (OPCs) has been proposed as a cause of periventricular leukomalacia (PVL), the most common brain injury found in preterm infants. Preventing death of OPCs is a potential strategy to prevent or treat PVL. In the current study, we utilized an in vitro cell culture system to investigate the effect of insulin-like growth factor-1 (IGF-1) on tumor necrosis factor-alpha (TNFalpha)-induced OPC injury and the possible mechanisms involved. OPCs were isolated from neonatal rat optic nerves and cultured in chemically defined medium (CDM) supplemented with platelet-derived growth factor and basic fibroblast growth factor. Exposure to TNFalpha resulted in death of OPCs. IGF-1 protected OPCs from TNFalpha cytotoxicity in a dose-dependent manner as measured by the XTT and TUNEL assays. IGF-1 activates both the PI3K/Akt and the extracellular signal-regulated kinase (ERK) pathway. However, IGF-1-enhanced cell survival signals were mediated by the PI3K/Akt, but not by the ERK pathway, as evidenced by the observation that IGF-1-enhanced cell survival was partially abrogated by Akti, the Akt inhibitor, or wortmannin, the PI3K inhibitor, but not by PD98,059, the MAPK kinase/ERK kinase inhibitor. The downstream events of IGF-1-triggered survival signals included phosphorylation of BAD, blockade of TNFalpha-induced translocation of Bax from the cytosol to the mitochondrial membrane, and suppression of caspase-9 and caspase-3 activation. These observations indicate that the protection of OPCs by IGF-1 is mediated, at least partially, by interruption of the mitochondrial apoptotic pathway via activation of PI3K/Akt.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app