JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Computer modeling of the effect of perfusion on heating patterns in radiofrequency tumor ablation.

PURPOSE: To use an established computer simulation model of radiofrequency (RF) ablation to further characterize the effect of varied perfusion on RF heating for commonly used RF durations and electrode types, and different tumor sizes.

METHODS: Computer simulation of RF heating using 2-D and 3-D finite element analysis (Etherm) was performed. Simulated RF application was systematically modeled on clinically relevant application parameters for a range of inner tumor perfusion (0-5 kg/m3-s) and outer normal surrounding tissue perfusion (0-5 kg/m3-s) for internally cooled 3-cm single and 2.5-cm cluster electrodes over a range of tumor diameters (2-5 cm), and RF application times (5-60 min; n = 4618 simulations). Tissue heating patterns and the time required to heat the entire tumor +/- a 5-mm margin to > 50 degrees C were assessed. Three-dimensional surface response contours were generated, and linear and higher order curve-fitting was performed.

RESULTS: For both electrodes, increasing overall tissue perfusion exponentially decreased the overall distance of the 50 degrees C isotherm (R2 = 0.94). Simultaneously, increasing overall perfusion exponentially decreased the time required to achieve thermal equilibrium (R2 = 0.94). Furthermore, the relative effect of inner and outer perfusion varied with increasing tumor size. For smaller tumors (2 cm diameter, 3-cm single; 2-3 cm diameter, cluster), the ability and time to achieve tumor ablation was largely determined by the outer tissue perfusion value. However, for larger tumors (4-5 cm diameter single; 5 cm diameter cluster), inner tumor perfusion had the predominant effect.

CONCLUSION: Computer modeling demonstrates that perfusion reduces both RF coagulation and the time to achieve thermal equilibrium. These results further show the importance of considering not only tumor perfusion, but also size (in addition to background tissue perfusion) when attempting to predict the effect of perfusion on RF heating and ablation times.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app