JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Genetic modification does not affect the stemness of neural stem cells in nestin promoter-GFP transgenic mice.

Because nestin promoter-GFP mice have frequently been used in neural stem cell (NSC) research, it is essential to prove that there is no alteration in the stemness of NSCs derived from this transgenic model for the interpretation and validity of the data. We compared the stemness of NSCs derived from transgenic mice expressing GFP driven by the nestin enhancer with those from wild-type (C57BL/6) mice with respect to the general gene expression profile, expression of neural stem cell markers as nestin and Sox2, and responsiveness to neurotrophins (BDNF, PDGF-BB, and NT-3). The gene expression profile analysis showed that the coefficient of correlation between the two groups was very high (r=0.9865) in the total genes. We found that 23 genes were either up- or down-regulated more than two-fold in the NSCs from the transgenic mice (p<0.05), without any obvious functional relatedness among them. Likewise, there was no difference between the two mouse groups in the expression of nestin or Sox2, the ability to form neurospheres and the neuronal differentiation of NSCs by neurotrophins. Taken together, the self-renewal and neuronal differentiation ability of NSCs from the transgenic mice showed the great similarity to those from wild-type mice. Such information will be useful when the properties of NSCs are evaluated following genetic modification in such a nestin-GFP Tg model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app