Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Oxyl radicals, redox-sensitive signalling cascades and antioxidants.

Cellular Signalling 2007 September
Oxidative stress is an increase in the reduction potential or a large decrease in the reducing capacity of the cellular redox couples. A particularly destructive aspect of oxidative stress is the production of reactive oxygen species (ROS), which include free radicals and peroxides. Some of the less reactive of these species can be converted by oxidoreduction reactions with transition metals into more aggressive radical species that can cause extensive cellular damage. In animals, ROS may influence cell proliferation, cell death (either apoptosis or necrosis) and the expression of genes, and may be involved in the activation of several signalling pathways, activating cell signalling cascades, such as those involving mitogen-activated protein kinases. Most of these oxygen-derived species are produced at a low level by normal aerobic metabolism and the damage they cause to cells is constantly repaired. The cellular redox environment is preserved by enzymes and antioxidants that maintain the reduced state through a constant input of metabolic energy. This review summarizes current studies that have been regarding the production of ROS and the general redox-sensitive targets of cell signalling cascades.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app