Add like
Add dislike
Add to saved papers

Genetic disruption of guanylyl cyclase/natriuretic peptide receptor-A upregulates ACE and AT1 receptor gene expression and signaling: role in cardiac hypertrophy.

Physiological Genomics 2007 October 23
Guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) signaling antagonizes the physiological effects mediated by the renin-angiotensin system (RAS). The objective of this study was to determine whether the targeted-disruption of Npr1 gene (coding for GC-A/NPRA) leads to the activation of cardiac RAS genes involved on the hypertrophic remodeling process. The Npr1 gene-knockout (Npr1(-/-)) mice showed 30-35 mmHg higher systolic blood pressure (SBP) and a 63% greater heart weight-to-body weight (HW/BW) ratio compared with wild-type (Npr1(+/+)) mice. The mRNA levels of both angiotensin-converting enzyme and angiotensin II type 1a receptor were increased by three- and fourfold, respectively, in Npr1(-/-) null mutant mice hearts compared with the wild-type Npr1(+/+) mice hearts. In parallel, the expression levels of interleukin-6 and tumor necrosis factor-alpha were increased by four- to fivefold, in Npr1(-/-) mice hearts compared with control animals. The NF-kappaB binding activity in nuclear extracts of Npr1(-/-) mice hearts was increased by fourfold compared with wild-type Npr1(+/+) mice hearts. Treatments with captopril or hydralazine equally attenuated SBP; however, only captopril significantly decreased the HW/BW ratio and suppressed cytokine gene expression in Npr1(-/-) mice hearts. The ventricular cGMP level was reduced by almost sixfold in Npr1(-/-) mice compared with wild-type control mice. The results of the present study indicate that disruption of NPRA/cGMP signaling leads to the augmented expression of cardiac RAS pathways that promote the development of cardiac hypertrophy and remodeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app