Add like
Add dislike
Add to saved papers

Three-dimensional energy transport in highly luminescent host-guest crystals: a quantitative experimental and theoretical study.

We present a combined experimental and theoretical study on energy transfer processes in a well-defined three-dimensional host-guest system, which allows for high chromophore concentrations while maintaining the highly luminescent properties of the molecules in solution. The self-assembled, nanostructured system with a defined ratio of included donor and acceptor molecules is amenable to quantitative comparison between experiment and theory. Experimentally, energy migration is monitored by steady-state and time-resolved fluorescence spectroscopy. From the theoretical side, the energy transfer process is modeled by a Monte Carlo approach including homo and hetero transfer steps with multi-acceptor distribution. In this dense system, the classical Förster point-dipole approach for energy transfer breaks down, and the hopping rates are therefore calculated on the basis of a quantum-chemical description of the donor and acceptor excited states. Thereby, the true directionality of the excitation diffusion is revealed. Excellent agreement with experimental donor and acceptor decays and overall transfer efficiencies is found. Even at low acceptor concentrations (down to 0.1%), efficient energy transfer over distances as large as 25 nm was observed due to rapid energy migration through a series of homo-transfer steps with preference along one direction of the structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app