Add like
Add dislike
Add to saved papers

Oxidative processes for olive mill wastewater treatment.

The present work describes an experimental study carried out in order to investigate the efficiency and feasibility of physical (lime coagulation) and advanced oxidation processes (Ozone and Fenton's process) for olive oil mill wastewater treatment. Particular attention was paid to the degradation of both organic and phenolic compounds. Lime coagulation reaches maximum removal at a pH of 12, with a TP (total polyphenols) and COD reduction of 37 and 26%, respectively. Ozone oxidation is also pH-dependent, showing the higher removal efficiency (91% for TP and 19% for COD) with an initial pH value of 12. Experimental results show a lower efficiency of Fenton's process than ozone in TP removal, reaching a maximum value of 60%. Oxidation trials carried out on gallic and p-coumaric synthetic solutions confirmed ozone and Fenton's efficiency at degrading phenolic compounds. Biological trials, both aerobic and anaerobic, highlighted a significant increase of biodegradability of treated OMW samples if compared to the untreated ones. Respirometric tests showed an increase in BOD of about 20% and anaerobic batch tests provided a methane production up to eight times higher.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app