JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Low intensity training decreases markers of oxidative stress in skeletal muscle of mdx mice.

Reactive oxygen species may contribute to the pathogenesis of muscular dystrophy. High intensity exercise clearly induces muscle damage in mdx mice; however, the effects of low intensity exercise training (LIT) on mdx muscle are less clear. We examined the effect of LIT on markers of oxidative stress (malondialdehyde and protein carbonyls), antioxidant (superoxide dismutase, catalase, and glutathione peroxidase), and mitochondrial (2-oxoglutarate dehydrogenase and cytochrome oxidase) enzymes in skeletal muscle of mdx and wild-type mice. Mdx and wild-type mice were allocated to LIT and sedentary groups. Malondialdehyde levels were higher in white muscle from sedentary mdx as compared to both sedentary and LIT wild-type mice (P<0.001). Protein carbonyl content was higher in white and red muscle of mdx versus wild-type mice (P<0.05). LIT was associated with lower levels of malondialdehyde and protein carbonyls in white muscle of mdx mice (decreased 38 and 44%, P<0.001 and P<0.01, respectively). Antioxidant and mitochondrial enzyme activities were higher in white muscle of mdx than in wild-type mice (P<0.05). LIT in mdx mice induced physiological adaptation resulting in lower levels of markers of oxidative stress that were not different than those from wild type. These results are of relevance for therapeutic exercise in patients with dystrophinopathy where exercise prescription remains controversial.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app