Add like
Add dislike
Add to saved papers

Carvedilol ameliorates endothelial dysfunction in streptozotocin-induced diabetic rats.

The beta-blocker, carvedilol has an additional endothelium-dependent vasodilating properties in patients with hypertension or heart failure. Whether carvedilol can improve endothelium-dependent relaxation in a diabetic animal model and its mechanism of action are unknown. The aim of this study was to investigate the effect of carvedilol on the endothelial-response of aortas from diabetic rats and the underlying mechanism. Acetylcholine-induced endothelium-dependent relaxation, sodium nitroprusside (SNP)-induced endothelium-independent relaxation, and expression of nitric oxide synthase 3 (NOS3) mRNA were measured in aortas isolated from both non-diabetic and streptozotocin-induced diabetic rats. The level of NO in serum was also measured 5 weeks after carvedilol administration (1 or 10 mg/kg/day). Endothelium-dependent relaxation declined along with the decrease of serum NO level in aortas from diabetic rats. Treatment with carvedilol for 5 weeks prevented the inhibition of endothelium-dependent relaxation and the decrease of serum NO levels caused by diabetes. The expression of NOS3 mRNA, protein expression and NOS3 phosphorylation at Ser1177 in diabetic rat aorta was very low in untreated diabetic aortas compared with the healthy group. Administration of carvedilol not only significantly increased the expression of NOS3 mRNA but also protein expression and NOS3 phosphorylation at Ser1177 in the healthy and diabetic groups. In conclusion, chronic carvedilol administration significantly ameliorated the endothelial dysfunction in diabetic rat aortas, in which increased NO level, up-regulated NOS3 mRNA and phosphorylation at Ser1177 may be involved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app