JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait.

The purpose of this study was to identify gait asymmetries during the mid-stance phase of gait among subjects with knee instability ("non-copers") after acute anterior cruciate ligament (ACL) rupture. Twenty-one non-copers with acute, isolated ACL injury ambulated at their intentional walking speed as kinetic, kinematic, and electromyographic (EMG) data were collected bilaterally. Lower extremity movement patterns and muscle activity were analyzed during the mid-stance and weight acceptance phases of stance. When compared to the uninjured limb, subjects exhibited lower sagittal plane knee excursions and peak knee angles, and higher muscle co-contraction on the injured limb. There was a lower knee flexion moment at peak knee extension, a trend for the knee contribution to the total support moment to be lower, and a higher ankle contribution to the total support moment on the injured limb. There were differences in the magnitude of muscle activity which included higher hamstring activity and lower soleus activity on the injured limb. Changes in quadriceps, soleus, and hamstring muscle activity on the injured limb were identified during weight acceptance that had not previously been reported, while hip compensation for a lower knee contribution to the total support moment has been described. Non-copers consistently stabilize their knee with a stiffening strategy involving less knee motion and higher muscle contraction. The variable combination of muscle adaptations that produce joint stiffness, and the ability of both the ankle and the hip to compensate for lower knee control indicate the non-coper neuromuscular system may be more malleable than previously believed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app