Association of estrogen receptor beta with plasma-membrane caveola components: implication in control of vitamin D receptor

Liat Abovich Gilad, Betty Schwartz
Journal of Molecular Endocrinology 2007, 38 (6): 603-18
This study was designed to provide a direct demonstration of the importance of caveolin-1 in the compartmentalization of estrogen receptor beta (ERbeta) to the membrane, thus allowing 7beta-estradiol (E2) to control vitamin D receptor (VDR) transcription and expression. Our strategy was to obtain cell lines expressing different levels of caveolin-1. To this end, we transfected human embryonic kidney 293 cells with a caveolin-1-expressing vector and obtained three cell-line variants: one expressing high amounts of caveolin-1 (clone A), one expressing low amounts of caveolin-1 (clone B), and one expressing high amounts of the nonfunctional P132L caveolin-1 mutant (clone C), and compared these with parental (wild-type, WT) cells expressing negligible levels of caveolin-1. In clone A, ERbeta colocalized to membrane preparations and E2 treatment induced significant ERK 1/2 phosphorylation and enhanced VDR expression. In clones B and C and the WT, ERbeta did not localize to membrane preparations and E2 treatment was ineffective at inducing VDR upregulation associated with ERK 1/2 phosphorylation. Luciferase reporter gene expression assays showed that the human VDR promoter is only highly responsive to E2 treatment in clone A, except in the presence of the ER-specific inhibitor ICI182 780. Cotransfection of clone A with the VDR promoter and several mutants of MAPK kinase (MEK) demonstrated that the constitutively active form of MEK significantly increases VDR promoter activation, while the catalytically inactive construct is ineffective in this regard. In clone A cells transfected with an activation protein-1 (AP-1)-luciferase construct, E2 significantly upregulated the promoter activity, while ICI182 780 completely eliminated this E2-mediated effect. Clone A cells transfected with a VDR promoter bearing a targeted mutation towards the AP-1 site showed reduced E2-mediated activation of luciferase activity. Taken together, our data confirm the importance of caveolin-1 in the association of ERbeta to the membrane caveolae, allowing ERK 1/2 phosphorylation and upregulation of VDR.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"