JOURNAL ARTICLE

A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis

Clara I Sánchez, Roberto Hornero, María I López, Mateo Aboy, Jesús Poza, Daniel Abásolo
Medical Engineering & Physics 2008, 30 (3): 350-7
17556004
We present an automatic image processing algorithm to detect hard exudates. Automatic detection of hard exudates from retinal images is an important problem since hard exudates are associated with diabetic retinopathy and have been found to be one of the most prevalent earliest signs of retinopathy. The algorithm is based on Fisher's linear discriminant analysis and makes use of colour information to perform the classification of retinal exudates. We prospectively assessed the algorithm performance using a database containing 58 retinal images with variable colour, brightness, and quality. Our proposed algorithm obtained a sensitivity of 88% with a mean number of 4.83+/-4.64 false positives per image using the lesion-based performance evaluation criterion, and achieved an image-based classification accuracy of 100% (sensitivity of 100% and specificity of 100%).

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17556004
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"