JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Anticoagulant effects of low-molecular-weight heparins in healthy cats.

BACKGROUND: Low-molecular-weight heparin (LMWH) has potential benefit in cats at risk for thromboembolic disease. However, LMWH pharmacokinetics has not been characterized in the cat. Drug effect with LMWH may be evaluated with analysis of factor Xa inhibition (anti-Xa) or thromboelastography (TEG).

HYPOTHESIS: Administration of LMWH at previously recommended dosages and schedules to healthy cats will result in inhibition of factor Xa and hypocoagulable TEG.

ANIMALS: In vivo research with heparin was performed in 5 purpose-bred cats.

METHODS: In a prospective study with randomized crossover design, heparin or placebo was administered. Treatments were unfractionated heparin (UFH), 250 IU/kg q6h; dalteparin, 100 IU/kg q12h; enoxaparin, 1 mg/kg q12h; or 0.9% saline, 0.25 mL/kg q6h. Each drug was administered for 5 consecutive days followed by a minimum washout of 14 days. Baseline and post-treatment analyses included anti-Xa, TEG, and prothrombin time/activated partial thromboplastin time.

RESULTS: Mean anti-Xa activity 4 hours after enoxaparin (0.48 U/mL) approached the human therapeutic target (0.5-1.0 U/mL); however, mean trough anti-Xa activity was below detection limits. Mean anti-Xa activity 4 hours after dalteparin was lower, and only 1 cat attained therapeutic target at a single time point. Cats receiving UFH attained target anti-Xa activity and changes in TEG at trough and 4 hours.

CONCLUSIONS: Cats have rapid absorption and elimination kinetics with LMWH therapy. On the basis of pharmacokinetic modeling, cats will require higher dosages and more frequent administration of LMWH to achieve human therapeutic anti-factor Xa activity of 0.5-1 U/mL. Peak anti-Xa activity is predicted at 2 hours after administration of LMWH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app