JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Extracting the Green's function of attenuating heterogeneous acoustic media from uncorrelated waves.

The Green's function of acoustic or elastic wave propagation can, for loss-less media, be retrieved by correlating the wave field that is excited by random sources and is recorded at two locations. Here the generalization of this idea to attenuating acoustic waves in an inhomogeneous medium is addressed, and it is shown that the Green's function can be retrieved from waves that are excited throughout the volume by spatially uncorrelated injection sources with a power spectrum that is proportional to the local dissipation rate. For a finite volume, one needs both volume sources and sources at the bounding surface for the extraction of the Green's functions. For the special case of a homogeneous attenuating medium defined over a finite volume, the phase and geometrical spreading of the Green's function is correctly retrieved when the volume sources are ignored, but the attenuation is not.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app