Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Morphine inhibits doxorubicin-induced reactive oxygen species generation and nuclear factor kappaB transcriptional activation in neuroblastoma SH-SY5Y cells.

Biochemical Journal 2007 September 2
Morphine is recommended as a first-line opioid analgesic in the pain management of cancer patients. Accumulating evidence shows that morphine has anti-apoptotic activity, but its impact on the therapeutic applications of antineoplastic drugs is not well known. The present study was undertaken to test the hypothesis that morphine might antagonize the pro-apoptotic activity of DOX (doxorubicin), a commonly used antitumour drug for the treatment of neuroblastoma, in cultured SH-SY5Y cells. In the present study we demonstrated that morphine suppressed DOX-induced inhibition of cell proliferation and programmed cell death in a concentration-dependent, and naloxone as well as pertussis toxin-irreversible, manner. Further studies showed that morphine inhibited ROS (reactive oxygen species) generation, and prevented DOX-mediated caspase-3 activation, cytochrome c release and changes of Bax and Bcl-2 protein expression. The antioxidant NAC (N-acetylcysteine) also showed the same effects as morphine on DOX-induced ROS generation, caspase-3 activation and cytochrome c release and changes in Bax (Bcl-2-associated X protein) and Bcl-2 protein expression. Additionally, morphine was found to suppress DOX-induced NF-kappaB (nuclear factor kappaB) transcriptional activation via a reduction of IkappaBalpha (inhibitor of nuclear factor kappaB) degradation. These present findings support the hypothesis that morphine can inhibit DOX-induced neuroblastoma cell apoptosis by the inhibition of ROS generation and mitochondrial cytochrome c release, as well as by blockade of NF-kappaB transcriptional activation, and suggests that morphine might have an impact on the antitumour efficiency of DOX.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app