Objective and subjective comparison of standard 2-D and fully 3-D reconstructed data on a PET/CT system

Klaus Strobel, Matthias Rüdy, Valerie Treyer, Patrick Veit-Haibach, Cyrill Burger, Thomas F Hany
Nuclear Medicine Communications 2007, 28 (7): 555-9

OBJECTIVE: The relative advantage of fully 3-D versus 2-D mode for whole-body imaging is currently the focus of considerable expert debate. The nature of 3-D PET acquisition for FDG PET/CT theoretically allows a shorter scan time and improved efficiency of FDG use than in the standard 2-D acquisition. We therefore objectively and subjectively compared standard 2-D and fully 3-D reconstructed data for FDG PET/CT on a research PET/CT system.

MATERIALS AND METHODS: In a total of 36 patients (mean 58.9 years, range 17.3-78.9 years; 21 male, 15 female) referred for known or suspected malignancy, FDG PET/CT was performed using a research PET/CT system with advanced detector technology with improved sensitivity and spatial resolution. After 45 min uptake, a low-dose CT (40 mAs) from head to thigh was performed followed by 2-D PET (emission 3 min per field) and 3-D PET (emission 1.5 min per field) with both seven slices overlap to cover the identical anatomical region. Acquisition time was therefore 50% less (seven fields; 21 min vs. 10.5 min). PET data was acquired in a randomized fashion, so in 50% of the cases 2-D data was acquired first. CT data was used for attenuation correction. 2-D (OSEM) and 3-D PET images were iteratively reconstructed. Subjective analysis of 2-D and 3-D images was performed by two readers in a blinded, randomized fashion evaluating the following criteria: sharpness of organs (liver, chest wall/lung), overall image quality and detectability and dignity of each identified lesion. Objective analysis of PET data was investigated measuring maximum standard uptake value with lean body mass (SUV(max,LBM)) of identified lesions.

RESULTS: On average, per patient, the SUV(max) was 7.86 (SD 7.79) for 2-D and 6.96 (SD 5.19) for 3-D. On a lesion basis, the average SUV(max) was 7.65 (SD 7.79) for 2-D and 6.75 (SD 5.89) for 3-D. The absolute difference on a paired t-test of SUV 3-D-2-D based on each measured lesion was significant with an average of -0.956 (P=0.002) and an average of -0.884 on a patient base (P<0.05). With 3-D the SUV(max) decreased by an average of 5.2% for each lesion, and an average of 6.0% for each patient. Subjective analysis showed fair inter-observer agreement regarding detectability (kappa=0.24 for 3-D; 0.36 for 3-D) and dignity (kappa=0.44 for 3-D and 0.4 for 2-D) of the lesions. There was no significant diagnostic difference between 3-D and 2-D. Only in one patient, a satellite liver metastasis of a colon cancer was missed in 3-D and detected only in 2-D. On average, the overall image quality for 3-D images was equal (in 24%) or inferior (in 76%) compared to 2-D.

CONCLUSION: A possible major advantage of 3-D data acquisition is the faster patient throughput with a 50% reduction in scan time. The fully 3-D reconstruction technique has overcome the technical drawbacks of current 3-D imaging technique. In our limited number of patients there was no significant diagnostic difference between 2-D and fully 3-D.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"