JOURNAL ARTICLE

Inhibition of a specific N-glycosylation activity results in attenuation of breast carcinoma cell invasiveness-related phenotypes: inhibition of epidermal growth factor-induced dephosphorylation of focal adhesion kinase

Hua-Bei Guo, Matthew Randolph, Michael Pierce
Journal of Biological Chemistry 2007 July 27, 282 (30): 22150-62
17537730
Changes in the expression of glycosyltransferases that branch N-linked glycans can alter the function of several types of cell surface receptors and a glucose transporter. To study in detail the mechanisms by which aberrant N-glycosylation caused by altered N-acetylglucosaminyltransferase V(GnT-V, GnT-Va, and Mgat5a) expression can regulate the invasiveness-related phenotypes found in some carcinomas, we utilized specific small interfering RNA (siRNA) to selectively knock down GnT-V expression in the highly metastatic and invasive human breast carcinoma cell line, MDA-MB231. Knockdown of GnT-V by siRNA expression had no effect on epidermal growth factor receptor expression levels but lowered expression of N-linked beta(1,6)-branching on epidermal growth factor receptor, as expected. Compared with control cells, knockdown of GnT-V caused significant inhibition of the morphological changes and cell detachment from matrix that is normally seen after stimulation with epidermal growth factor (EGF). Decreased expression of GnT-V caused a marked inhibition of EGF-induced dephosphorylation of focal adhesion kinase (FAK), consistent with the lack of cell morphology changes in the cells expressing GnT-V siRNA. The attenuation of EGF-mediated phosphorylation and activation of the tyrosine phosphatase SHP-2 was dramatically observed in GnT-V knockdown cells, and these effects could be rescued by reintroduction of GnT-V into these cells, indicating that reduced EGF-mediated activation of SHP-2 was GnT-V related. Concomitantly, knockdown of GnT-V caused reduced EGF-mediated ERK signaling and tumor cell invasiveness-related phenotypes, including effects on actin rearrangement and cell motility. No changes in EGF binding were observed, however, after knockdown of GnT-V. Our results demonstrate that decreased GnT-V activity due to siRNA expression in human breast carcinoma cells resulted in an inhibition of EGF-stimulated SHP-2 activation and, consequently, caused attenuation of the dephosphorylation of FAK induced by EGF. These effects suppressed EGF-mediated downstream signaling and invasiveness-related phenotypes and suggest GnT-V as a potential therapeutic target.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17537730
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"