Add like
Add dislike
Add to saved papers

Inhibition of the activation of multiple serine proteases with a cathepsin C inhibitor requires sustained exposure to prevent pro-enzyme processing.

Cathepsin C is a cysteine protease required for the activation of several pro-inflammatory serine proteases and, as such, is of interest as a therapeutic target. In cathepsin C-deficient mice and humans, the N-terminal processing and activation of neutrophil elastase, cathepsin G, and proteinase-3 is abolished and is accompanied by a reduction of protein levels. Pharmacologically, the consequence of cathepsin C inhibition on the activation of these serine proteases has not been described, due to the lack of stable and non-toxic inhibitors and the absence of appropriate experimental cell systems. Using novel reversible peptide nitrile inhibitors of cathepsin C, and cell-based assays with U937 and EcoM-G cells, we determined the effects of pharmacological inhibition of cathepsin C on serine protease activity. We show that indirect and complete inhibition of neutrophil elastase, cathepsin G, and proteinase-3 is achievable in intact cells with selective and non-cytotoxic cathepsin C inhibitors, at concentrations approximately 10-fold higher than those required to inhibit purified cathepsin C. The concentration of inhibitor needed to block processing of these three serine proteases was similar, regardless of the cell system used. Importantly, cathepsin C inhibition must be sustained to maintain serine protease inhibition, because removal of the reversible inhibitors resulted in the activation of pro-enzymes in intact cells. These findings demonstrate that near complete inhibition of multiple serine proteases can be achieved with cathepsin C inhibitors and that cathepsin C inhibition represents a viable but challenging approach for the treatment of neutrophil-based inflammatory diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app