JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Persistent organic pollutants carried by synthetic polymers in the ocean environment.

Thermoplastic resin pellets are melted and formed into an enormous number of inexpensive consumer goods, many of which are discarded after a relatively short period of use, dropped haphazardly onto watersheds and then make their way to the ocean where some get ingested by marine life. In 2003 and 2004 pre-production thermoplastic resin pellets and post-consumer plastic fragments were collected and analyzed for contamination for persistent organic pollutants (POPs). Samples were taken from the North Pacific Gyre, and selected sites in California, Hawaii, and from Guadalupe Island, Mexico. The total concentration of PCBs ranged from 27 to 980 ng/g; DDTs from 22 to 7100 ng/g and PAHs from 39 to 1200 ng/g, and aliphatic hydrocarbons from 1.1 to 8600 microg/g. Analytical methods were developed to extract, concentrate and identify POPs that may have accumulated on plastic fragments and plastic pellets. The results of this study confirm that plastic debris is a trap for POPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app