LETTER

A convex approach to validation-based learning of the regularization constant

K Pelckmans, J A K Suykens, B De Moor
IEEE Transactions on Neural Networks 2007, 18 (3): 917-20
17526357
This letter investigates a tight convex relaxation to the problem of tuning the regularization constant with respect to a validation based criterion. A number of algorithms is covered including ridge regression, regularization networks, smoothing splines, and least squares support vector machines (LS-SVMs) for regression. This convex approach allows the application of reliable and efficient tools, thereby improving computational cost and automatization of the learning method. It is shown that all solutions of the relaxation allow an interpretation in terms of a solution to a weighted LS-SVM.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17526357
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"