JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rho-kinase activation in endothelial cells contributes to expansion of infarction after focal cerebral ischemia.

Microcirculatory disturbances contribute to the expansion of infarct lesions after focal cerebral ischemia. Recently, it was shown that Rho-kinase involves in endothelial dysfunction via down-regulation of endothelial nitric oxide synthase function in a rodent stroke model. However, it is not clear whether endothelial Rho-kinase is activated in vivo or Rho-kinase activation contributes to microcirculatory disturbances after cerebral ischemia. In this study, we assessed the temporal and spatial profiles of Rho-kianse activity and the effect of the Rho-kinase inhibitor fasudil on microcirculatory disturbances in the focal brain ischemia. Rho-kinase activation was evaluated by analyzing the phosphorylation of adducin, a substrate of Rho-kinase, by immunohistochemistry. Staining for p-adducin was found in endothelia in the ischemic area 6 hr after induction of ischemia. Microcirculatory disturbances and increased endothelial cell staining for von Willebrand factor (vWF) were observed in the same area. Postischemic treatment with fasudil suppressed endothelial Rho-kinase activation, preserved microcirculation, and inhibited endothelial cell vWF staining. These effects resulted in inhibition of infarct expansion and improvement of neurologic deficits. These findings indicate that Rho-kinase is activated in the endothelial cells and contributes to microcirculatory disturbances in cerebral ischemia. The vascular protective effect of Rho-kinase inhibitors may be useful in the treatment of the acute phase of ischemic stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app