Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Separation of microparticles and biological cells inside an evaporating droplet using dielectrophoresis.

Microparticles or biological cells mixed in water were separated using the combination of an electrical force due to dielectrophoresis and a mechanical one generated in an evaporating droplet. Micropatterned electrodes of Au were fabricated on the silicon dioxide layer and were used to generate dielectrophoresis. Polystyrene particles, red blood cells. and E. coli were used as separating objects. Microparticles and biological cells were separated by adjusting the amplitude and frequency of the applied voltage. Although the mechanical force was enough to transport the particles to the boundary of the droplet, nevertheless, it could not detach the particles trapped at the electrode. Based on this work, the microparticles and biological cells can be separated, controlled, and sensed without using a liquid pumping unit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app