Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles

Jing Zhao, Lasse Jensen, Jiha Sung, Shengli Zou, George C Schatz, Richard P Van Duyne
Journal of the American Chemical Society 2007 June 20, 129 (24): 7647-56
Localized surface plasmon resonance (LSPR) is a key optical property of metallic nanoparticles. The peak position of the LSPR for noble-metal nanoparticles is highly dependent upon the refractive index of the surrounding media and has therefore been used for chemical and biological sensing. In this work, we explore the influence of resonant adsorbates on the LSPR of bare Ag nanoparticles (lambda(max,bare)). Specifically, we study the effect of rhodamine 6G (R6G) adsorption on the nanoparticle plasmon resonance because of its importance in single-molecule surface-enhanced Raman spectroscopy (SMSERS). Understanding the coupling between the R6G molecular resonances and the nanoparticle plasmon resonances will provide further insights into the role of LSPR and molecular resonance in SMSERS. By tuning lambda(max,bare) through the visible wavelength region, the wavelength-dependent LSPR response of the Ag nanoparticles to R6G binding was monitored. Furthermore, the electronic transitions of R6G on Ag surface were studied by measuring the surface absorption spectrum of R6G on an Ag film. Surprisingly, three LSPR shift maxima are found, whereas the R6G absorption spectrum shows only two absorption features. Deconvolution of the R6G surface absorption spectra at different R6G concentrations indicates that R6G forms dimers on the metal surface. An electromagnetic model based on quasi-static (Gans) theory reveals that the LSPR shift features are associated with the absorption of R6G monomer and dimers. Electronic structure calculations of R6G under various conditions were performed to study the origin of the LSPR shift features. These calculations support the view that the R6G dimer formation is the most plausible cause for the complicated LSPR response. These findings show the extreme sensitivity of LSPR in elucidating the detailed electronic structure of a resonant adsorbate.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"