Rapamycin-conditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance

Heth R Turnquist, Giorgio Raimondi, Alan F Zahorchak, Ryan T Fischer, Zhiliang Wang, Angus W Thomson
Journal of Immunology 2007 June 1, 178 (11): 7018-31
The ability of dendritic cells (DC) to regulate Ag-specific immune responses via their influence on T regulatory cells (Treg) may be key to their potential as therapeutic tools or targets for the promotion/restoration of tolerance. In this report, we describe the ability of maturation-resistant, rapamycin (RAPA)-conditioned DC, which are markedly impaired in Foxp3(-) T cell allostimulatory capacity, to favor the stimulation of murine alloantigen-specific CD4(+)CD25(+)Foxp3(+) Treg. This was distinct from control DC, especially following CD40 ligation, which potently expanded non-Treg. RAPA-DC-stimulated Treg were superior alloantigen-specific suppressors of T effector responses compared with those stimulated by control DC. Supporting the ability of RAPA to target effector T and B cells, but permit the proliferation and suppressive function of Treg, an infusion of recipient-derived alloantigen-pulsed RAPA-DC followed by a short postoperative course of low-dose RAPA promoted indefinite (>100 day) heart graft survival. This was associated with graft infiltration by CD4(+)Foxp3(+) Treg and the absence of transplant vasculopathy. The adoptive transfer of CD4(+) T cells from animals with long-surviving grafts conferred resistance to rejection. These novel findings demonstrate that, whereas maturation resistance does not impair the capacity of RAPA-DC to modulate Treg, it profoundly impairs their ability to expand T effector cells. A demonstration of this mechanism endorses their potential as tolerance-promoting cellular vaccines.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"