Add like
Add dislike
Add to saved papers

Top-down extended meshing algorithm and its applications to Green's tensor nano-optics calculations.

We present a computational algorithm which speeds up Green's tensor nano-optics calculations by means of optimizing the mesh that represents the system we want to investigate. The algorithm automates the process of creating a variable-size mesh that describes an arbitrary nanostructure. The total number of elements of this mesh is smaller than that of a regular mesh representing the same structure, and thus the Green's tensor calculations can be performed faster. Precision, however, is kept at a similar level than for the regular mesh. Typically, the algorithm yields a mesh that speeds up Green's tensor calculations by a factor of 4, while giving a maximum error in the field magnitude of about 5%. The speed-up factor makes it very suitable for otherwise lengthy calculations, and the error should be acceptable for most applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app