Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Calcium induces increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation.

Previous studies have shown that raising cytosolic calcium in myotubes induces increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha expression and mitochondrial biogenesis. This finding suggests that the increases in cytosolic calcium in skeletal muscle during exercise may mediate the exercise-induced increase in mitochondria. The initial aim of this study was to determine whether raising calcium in skeletal muscle induces the same adaptations as in myotubes. We found that treatment of rat epitrochlearis muscles with a concentration of caffeine that raises cytosolic calcium to a concentration too low to cause contraction induces increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha expression and mitochondrial biogenesis. Our second aim was to elucidate the pathway by which calcium induces these adaptations. Raising cytosolic calcium has been shown to activate calcium/calmodulin-dependent protein kinase in muscle. In the present study raising cytosolic calcium resulted in increases in phosphorylation of p38 mitogen-activated protein kinase and activating transcription factor-2, which were blocked by the calcium/calmodulin-dependent protein kinase inhibitor KN93 and by the p38 mitogen-activated protein kinase inhibitor SB202190. The increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha expression and mitochondrial biogenesis were also prevented by inhibiting p38 activation. We interpret these findings as evidence that p38 mitogen-activated protein kinase is downstream of calcium/calmodulin-dependent protein kinase in a signaling pathway by which increases in cytosolic calcium lead to increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha expression and mitochondrial biogenesis in muscle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app