Add like
Add dislike
Add to saved papers

Activation of dendritic cells and induction of CD4(+) T cell differentiation by aluminum-containing adjuvants.

Vaccine 2007 June 7
Aluminum-containing adjuvants are widely used in licensed human and veterinary vaccines. However, the mechanism by which these adjuvants enhance the immune response and predominantly stimulate a T(H)2 humoral immune response is not well understood. In this study, the effects of aluminum hydroxide and aluminum phosphate adjuvants on antigen presentation, expression of costimulatory molecules and cytokines by mouse dendritic cells (DCs) and the ability of DCs to induce T helper cell differentiation were investigated. Dendritic cells pulsed with ovalbumin (OVA) adsorbed to aluminum-containing adjuvants activated antigen-specific T cells more effectively than DCs pulsed with OVA alone. Aluminum hydroxide adjuvant had a significantly stronger effect than aluminum phosphate adjuvant. Both aluminum-containing adjuvants significantly increased the expression of CD86 on DCs but only aluminum hydroxide adjuvant also induced moderate expression of CD80. Aluminum-containing adjuvants stimulated the release of IL-1beta and IL-18 from DCs via caspase-1 activation. DCs incubated with LPS and OVA induced T(H)1 differentiation of naïve CD4(+) T cells. In contrast, DCs incubated with aluminum/OVA activated CD4(+) T cells to secrete IL-4 and IL-5 as well as IFN-gamma. Addition of neutralizing anti-IL-1beta antibodies decreased IL-5 production and addition of anti-IL-18 antibodies decreased both IL-4 and IL-5 production. Inhibition of IL-1beta and IL-18 secretion by DCs via inhibition of caspase-1 also led to a marked decrease of IL-4 and IL-5 by CD4(+) T cells. These results indicate that aluminum-containing adjuvants activate DCs and influence their ability to direct T(H)1 and T(H)2 responses through the secretion of IL-1beta and IL-18.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app