Add like
Add dislike
Add to saved papers

Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay.

The adsorption of Pb(II) onto Turkish (Bandirma region) kaolinite clay was examined in aqueous solution with respect to the pH, adsorbent dosage, contact time, and temperature. The linear Langmuir and Freundlich models were applied to describe equilibrium isotherms and both models fitted well. The monolayer adsorption capacity was found as 31.75 mg/g at pH 5 and 20 degrees C. Dubinin-Radushkevich (D-R) isotherm model was also applied to the equilibrium data. The mean free energy of adsorption (13.78 kJ/mol) indicated that the adsorption of Pb(II) onto kaolinite clay may be carried out via chemical ion-exchange mechanism. Thermodynamic parameters, free energy (deltaG degrees ), enthalpy (deltaH degrees ) and entropy (deltaS degrees ) of adsorption were also calculated. These parameters showed that the adsorption of Pb(II) onto kaolinite clay was feasible, spontaneous and exothermic process in nature. Furthermore, the Lagergren-first-order, pseudo-second-order and the intraparticle diffusion models were used to describe the kinetic data. The experimental data fitted well the pseudo-second-order kinetics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app