JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Temporal microbial diversity changes in solvent-degrading anaerobic granular sludge from low-temperature (15 degrees C) wastewater treatment bioreactors.

Anaerobic sludge granules were obtained from laboratory-scale anaerobic bioreactors used to treat pharmaceutical-like (methanol-, acetone- and propanol-contaminated) wastewater under low-temperature conditions (15 degrees C). The microbial diversity and diversity changes of the sludge samples were ascertained by applying 16S rRNA gene cloning and terminal restriction fragment length polymorphism (TRFLP) analyses, respectively, and using sludge samples from the inoculum, throughout and at the conclusion of the bioreactor trial. Data from genetic fingerprinting correlated well with those from physiological activity assays of the reactor biomass. Specifically, for example, TRFLP profiles indicated the dominance of hydrogenotrophic methanogens within the archaeal community, thus supporting the findings of specific methanogenic activity measurements. TRFLP data supported the hypothesis that the deviation between the replicated reactors, in terms of treatment efficiency, was associated with succession within the microbial communities present, and indicated that community development was linked to both operating temperature and wastewater composition. Fluorescence in situ hybridization (FISH) was also applied, to quantitatively assess the abundance of selected microbial groups, and revealed the underestimation of the abundance Methanosarcina by gene cloning analysis and demonstrated the spatial arrangement of these organisms within the architecture of the low-temperature solvent-degrading anaerobic biofilms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app