Impact of fatigue on gender-based high-risk landing strategies

Scott G McLean, Rebecca E Fellin, Rebecca E Felin, Natalie Suedekum, Gary Calabrese, Allen Passerallo, Susan Joy
Medicine and Science in Sports and Exercise 2007, 39 (3): 502-14

PURPOSE: Noncontact anterior cruciate ligament (ACL) injuries carry significant short- and long-term morbidity, particularly in females. To combat this epidemic, neuromuscular training has evolved aimed at modifying high-risk lower-limb biomechanics. However, injury rates and the gender disparity in these rates remain, suggesting that key components of the injury mechanism continue to be ignored. This study examined the potential contributions of neuromuscular fatigue to noncontact ACL injuries.

METHODS: Ten male and 10 female NCAA athletes had 3D lower-limb-joint kinematics and kinetics recorded during 10 drop jumps, both before and after fatigue. Mean subject-based initial-contact (N = 9) and peak stance-phase kinematic (N = 9) and normalized (mass x height) kinetic (N = 9) parameters were quantified before and after fatigue and submitted to a three-way ANOVA to determine for the main effects of leg, gender, and fatigue. A Bonferroni corrected alpha level of 0.002 was adopted for all statistical comparisons.

RESULTS: Females landed with more initial ankle plantar flexion and peak-stance ankle supination, knee abduction, and knee internal rotation compared with men. They also had larger knee adduction, abduction, and internal rotation, and smaller ankle dorsiflexion moments. Fatigue increased initial and peak knee abduction and internal rotation motions and peak knee internal rotation, adduction, and abduction moments, with the latter being more pronounced in females.

CONCLUSIONS: Fatigue-induced modifications in lower-limb control may increase the risk of noncontact ACL injury during landings. Gender dimorphic abduction loading in the presence of fatigue also may explain the increased injury risk in women. Understanding fatigue effects at both the central and peripheral levels will further afford elucidation of the ACL injury mechanism and, hence, more successful prevention strategies.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"