JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

P-glycoprotein expression in extracellular matrix formation of chondrogenic differentiation of human adult stem cells.

Mesenchymal stem cell (MSC) has been known as a good source of progenitor for multiple connective tissue including cartilage, muscle, adipocyte, and bone. P-glycoproteins (P-gps) also known as ABCB1 that exports diverse substrates are the product of the multidrug resistance-1 (MDR-1) gene. P-gp expression has been reported in chondrosarcoma and hypertrophic chondrocyte in the human growth plate. This study was designed to investigate the expression of P-gp during chondrogenic differentiation of adult human stem cells. Bone marrow samples were obtained from nine human donors after informed consent. The isolated mononuclear cells (MNCs) were incubated as one pellet/tube and 0.5ml chondrogenic medium in the presence of 10ng/ml of TGF-beta 1 and TGF-beta 3 for 28 days. The expression of surface P-gps was analyzed by flow cytometry and quantitative RT-PCR was performed for the detection of mRNA expression of MDR-1 and type II collagen gene. Total collagen and glycosaminoglycan (GAG) contents of the pellets were measured. Surface P-gp expression of the MSCs was decreased during chondrogenic differentiation. MDR-1 gene was decreased 10-fold after the 2-week incubation whereas type II collagen gene was increased 491-fold after the 4-week incubation in chondrogenic medium. The total amount of collagen and GAG were increased during pellet culture. This study has demonstrated a decrease in expression of P-gp and down regulation of MDR-1 gene consistently by flow cytometry and quantitative RT-PCR, but an increased expression of type II collagen on MSC during chondrogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app