Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The Mi-2 nucleosome-remodeling protein LET-418 is targeted via LIN-1/ETS to the promoter of lin-39/Hox during vulval development in C. elegans.

The fate of the vulval cells in Caenorhabditis elegans is specified, at least in part, through a highly conserved RTK/Ras mediated signaling cascade that negatively regulates the activity of the ETS-like transcription factor LIN-1. The Hox gene lin-39 functions downstream of both, the LIN-3/RTK/Ras pathway and LIN-1 and plays a pivotal role in controlling vulva cell competence and induction. Here we show that LET-418, a C. elegans ortholog of the human NuRD component Mi-2, negatively modulates the activity of lin-39. LET-418 interacts in vivo with specific regions in the promoter of lin-39 and this interaction depends on LIN-1. Our data provide evidence for a model in which LIN-1 recruits LET-418/Mi-2 as co-repressor to the promoter of lin-39, thereby restricting its activity to the basal levels required in the vulva precursor cells (VPCs) for normal vulval development. Thus, our data suggest that the interaction between LIN-1 and LET-418/Mi-2 may link RTK/Ras signaling with chromatin remodeling and gene expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app