Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Role of neuronal nitric oxide synthase in lipopolysaccharide-induced tumor necrosis factor-alpha expression in neonatal mouse cardiomyocytes.

OBJECTIVE: Neuronal nitric oxide synthase (nNOS) has been shown to regulate intracellular calcium in cardiomyocytes. Calcium in turn modulates extracellular signal-related kinase (ERK) signaling, which is important in tumor necrosis factor-alpha (TNF-alpha) expression during lipopolysaccharide (LPS) stimulation. However, the role of nNOS in LPS-induced TNF-alpha expression is not known. We hypothesized that nNOS suppresses LPS-induced TNF-alpha expression by inhibiting the calcium/ERK signaling pathway.

METHODS AND RESULTS: Cultured neonatal mouse cardiomyocytes were challenged with LPS for 4 h. While there was no change in the basal Ca(2+) concentration, LPS increased peak Ca(2+) levels. LPS stimulation increased TNF-alpha mRNA and protein levels in wild-type cells however, the responses were enhanced in nNOS(-/-) cardiomyocytes. Treatment with an antisense oligonucleotide against nNOS also significantly enhanced TNF-alpha expression during LPS stimulation. Furthermore, LPS-induced ERK phosphorylation was significantly increased in the nNOS(-/-) compared to wild-type cardiomyocytes. The enhanced TNF-alpha expression in nNOS(-/-) cardiomyocytes was abrogated by an L-type calcium channel blocker verapamil or ERK1 siRNA. Finally, myocardial ERK phosphorylation and TNF-alpha expression were increased while cardiac function was decreased in endotoxemia in nNOS(-/-) compared to wild-type mice.

CONCLUSIONS: nNOS inhibits LPS-induced TNF-alpha expression in cardiomyocytes and improves cardiac function in endotoxemia. The inhibitory role of nNOS is mediated by a reduction in L-type calcium channel-dependent ERK signaling in cardiomyocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app