JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The co-ordinated regulation of iron homeostasis in murine macrophages limits the availability of iron for intracellular Salmonella typhimurium.

Cellular Microbiology 2007 September
In being both, a modifier of cellular immune effector pathways and an essential nutrient for microbes, iron is a critical determinant in host-pathogen interaction. Here, we investigated the metabolic changes of macrophage iron homeostasis and immune function following the infection of RAW264.7 murine macrophages with Salmonella typhimurium. We observed an enhanced expression of the principal iron export protein, ferroportin 1, and a subsequent increase of iron efflux in Salmonella-infected phagocytes. In parallel, the expression of haem oxygenase 1 and of the siderophore-binding peptide lipocalin 2 was markedly enhanced following pathogen entry. Collectively, these modulations reduced both the cytoplasmatic labile iron and the ferritin storage iron pool within macrophages, thus restricting the acquisition of iron by intramacrophage Salmonella. Correspondingly, limitation of macrophage iron decreased microbial survival, whereas iron supplementation impaired immune response pathways in Salmonella-infected macrophages (nitric oxide formation and tumour necrosis factor-alpha production) and promoted intracellular bacterial proliferation. Our findings suggest that the enhancement of ferroportin 1-mediated iron efflux, the upregulation of the haem-degrading enzyme haem oxygenase 1 and the induction of lipocalin 2 following infection concordantly aim at withholding iron from intracellular S. typhimurium and to increase antimicrobial immune effector pathways thus limiting pathogen proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app